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Abstract. In [1], Bousfield studied a lattice (Bousfield lattice) on the stable

homotopy category of spectra, and in [5], Hovey and Palmieri made the retract
conjecture on the lattice. In this paper we generalize the Bousfield lattice
and the retract conjecture to the ones on a monoid. We also determine the
structure of typical examples of them, which satisfy the generalized retract

conjecture. In particular we give the structure of the Bousfield lattice of the
stable homotopy category of harmonic spectra explicitly.

1. Introduction

LetM be a closed symmetric monoidal category with zero object, and consider
an object M of it. We call the full subcategory ⟨M⟩ ofM the Bousfield class of M
if it consists of objects A ofM such that MA = 0 by its monoidal structure. Then
we have a partial order on Bousfield classes by ⟨M⟩ ≤ ⟨N⟩ if every object of ⟨N⟩ is
an object of ⟨M⟩. Then the subcategories ⟨S⟩ and ⟨O⟩ of the unit S and the zero
O are the greatest and the least ones in the order, respectively. We call a collection
of Bousfield classes a Bousfield lattice, and denote it by B(M). In a case where a
Bousfield lattice is a set, the partial order introduces a lattice structure to it, and
we may investigate it algebraically.

In a sense, the stable homotopy theory is analyzing stable homotopy categories
(cf. [6]). A stable homotopy category is a symmetric monoidal category, and so
we may consider its Bousfield lattice. In particular, T. Ohkawa [8] (cf. [2]) showed
that the Bousfield lattice B of the stable homotopy category of spectra is a set, and
then Iyengar and Krause [7] generalized it to a stable homotopy category.

In order to investigate a category, we sometimes classify special subcategories
of it. From this viewpoint, we study a Bousfield lattice by classifying localizing
subcategories (see [6]). Indeed, every Bousfield class is a localizing subcategory.

In [5], Hovey and Palmieri studied the Bousfield lattice B deeply. Furthermore,
they proposed many conjectures on the structure of B. Among them, there is
the retract conjecture, which is one of our main topics. Dwyer and Palmieri [3]
constructed a stable homotopy category, where the conjecture does not hold. So
far, there seems no nontrivial category in which the conjecture holds. In this paper,
we give some examples of categories with the affirmative answer to the conjecture.

As stated above, a Bousfield lattice B(M) is a set in some cases. In this case, it is
a monoid with multiplication compatible with its order. We introduce the notion of
monoidal posets and define a functor β from a subcategory of commutative monoids
to the category of monoidal posets in Section two. Then we define a Bousfield lattice
of a monoid to be an object in the image of β, which is an analogy of Bousfield
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lattices of stable homotopy categories. In particular, B has not only a structure
of a monoidal poset, but also a Bousfield lattice associated to B itself. In section
three, we show analogous properties on a Bousfield lattice to those given by Hovey
and Palmieri [5] including the following:

Conjecture 1.1 (Original retract conjecture [5, Conj. 3.12]). Let h be the Bousfield
class of the mod p Eilenberg-MacLane spectrum HZ/p in the Bousfield lattice B.
Then, there is a lattice isomorphism r∗ : B/J(h) → DL. Here, J(h) is an ideal
related to h (see Notation 3.1).

We generalize it to generalized retract conjectures on a monoidally distributive
poset (Conjectures 3.18 and 3.20) and show some facts relating to them. Section
four is devoted to determine Bousfield lattices obtained from principal ideal do-
mains, and to show the conjecture true for them. In section five, we study about
Bousfield lattices of stable homotopy categories of Bousfield localized spectra, and
construct isomorphisms between the Bousfield lattice and a Bousfield lattice given
in section four. In particular, we have the following:

Theorem 1.2. The generalized retract conjectures holds on the stable homotopy
category of harmonic spectra.

One of our final goals is to determine the lattice structure of B, which seems
difficult so much. In the last section, we propose problems on the functor β, whose
answers may help us to understand the Bousfield lattice B. We expect that these
problems give us hints to reach the goal.

2. Monoidal posets and Bousfield lattices

Let M be commutative monoid with unit 1. We call M a monoid with 0 if M
admits an element 0 ∈ M such that 0 · x = 0 = x · 0 for any x ∈ M . A typical
example of it is a commutative ring ignoring addition. We denote by M0 the
category consisting of commutative monoids with 0 and monoid homomorphisms
preserving zero.

For M ∈M0, β(M) denotes a set consisting of subsets

⟨x⟩ = {y ∈M : xy = 0}
of M for x ∈M .

Lemma 2.1. β(M) for M ∈ M0 is also a monoid with 0 with inherited multipli-
cation. Therefore, we have the canonical epimorphism M → β(M) inM0.

Proof. Define a multiplication of β(M) by ⟨x⟩⟨y⟩ = ⟨xy⟩. We verify it well defined
as follows: Assume that ⟨x0⟩ = ⟨x1⟩ and ⟨y0⟩ = ⟨y1⟩. Then

zx0y0 = 0 ⇔ zx1y0 = 0 by ⟨x0⟩ = ⟨x1⟩
⇔ zx1y1 = 0 by ⟨y0⟩ = ⟨y1⟩,

and ⟨x0y0⟩ = ⟨x1y1⟩. The elements ⟨1⟩ and ⟨0⟩ are the unit and the zero elements.
□

Remark 2.2. We notice that β(R) = Z/2 if R is a domain.

Lemma 2.3. Let M be a monoid with 0. Then β(M) admits a partial order ‘≤’
on M defined by ⟨x⟩ ≤ ⟨y⟩ if ⟨x⟩ ⊃ ⟨y⟩. Besides, ⟨1⟩ and ⟨0⟩ are the greatest and
the least elements, respectively.
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Proof. This is trivial since ⟨1⟩ = {0} and ⟨0⟩ = M . □
By the lemma, a commutative monoid β(M) has also a poset structure. Then

we define the following notion by taking their crucial properties.

Definition 2.4. A monoidal poset P = (P,≤, ·, 1, 0) is defined by the following
data.

(1) (P, ·, 1, 0) is a monoid with 0.
(2) (P,≤) is a poset.
(3) The following are equivalent.

(a) x ≤ y.
(b) cy = 0 for c ∈ P implies cx = 0.

A monoidal poset map f : P → P ′ is an order preserving monoid homomorphism
with f(0) = 0.

Lemma 2.3 implies the following.

Corollary 2.5. β(M) for M ∈M0 is a monoidal poset with 1 = ⟨1⟩ and 0 = ⟨0⟩.

Lemma 2.6. Let M be a monoidal poset. Then, β(M) = M as a monoidal poset.

Remark 2.7. A monoidal poset seems a lattice, but unfortunately it is not true.
Indeed, we have an example: Consider a monoidal poset M = {1, xi, yi, w, 0: i =
1, 2} with multiplication

1 x1 x2 y1 y2 w
x1 w w 0 w 0
x2 w w w 0 0
y1 0 w 0 0 0
y2 w 0 0 0 0
w 0 0 0 0 0

Then, the join of y1 and y2 does not exist.

LetMP denote the category of monoidal posets and monoidal poset maps. Then
MP ⊂M0.

Lemma 2.8. Let M be a monoidal poset. Then, xz ≤ yw if x ≤ y and z ≤ w. In
particular, if x ≤ y, then xz ≤ yz for any z.

Proposition 2.9. The categoryMP admits a direct product.

Proof. Let {Mλ} be a family of monoidal posets. Then, we have a direct product∏
λ Mλ of monoids. Consider an order ‘≤’ on

∏
λ Mλ defined by (xλ) ≤ (yλ) if

(cλ)(yλ) = (0) implies (cλ)(xλ) = (0). It is straightforward to verify this is the
desired direct product. □
Lemma 2.10. Let {Mλ} be a family of monoidal posets. Then, ⟨xλ⟩ ≤ ⟨yλ⟩ for
all λ if and only if ⟨(xλ)⟩ ≤ ⟨(yλ)⟩. Here, ⟨xλ⟩, ⟨yλ⟩ ∈ β(Mλ) and ⟨(xλ)⟩, ⟨(yλ)⟩ ∈
β(

∏
λ Mλ).

Proof. Assume that ⟨xλ⟩ ≤ ⟨yλ⟩ for any λ. Then

(cλ)(yλ) = 0 ⇒ cλyλ = 0 for any λ
⇒ cλxλ = 0 for any λ (∵ ⟨xλ⟩ ≤ ⟨yλ⟩)
⇒ (cλ)(xλ) = 0,
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Conversely, suppose that ⟨(xµ)⟩ ≤ ⟨(yµ)⟩. Then, for any λ,

yλcλ = 0 ⇒ (yλ)(cλ)0 = 0
⇒ (xλ)(cλ)0 = 0 (∵ ⟨(xµ)⟩ ≤ ⟨(yµ)⟩)
⇒ xλcλ = 0

in Mλ, where (cλ)0 denotes an element (xµ) such that xλ = cλ and xµ = 0 for
µ ̸= λ. □

Corollary 2.11. Let {Mλ} be a family of monoidal posets. Define an order ≤′ on
the set

∏
λ Mλ by (xλ) ≤′ (yλ) if xλ ≤ yλ for all λ. Then it is equivalent to the

order above ≤.

Corollary 2.12. Let {Mλ} be a family of monoidal posets. Then,
∨

µ(x
µ
λ) =

(
∨

µ x
µ
λ) for any subset {(xµ

λ)}µ ⊂
∏

λ Mλ.

Proof. Since (xµ
λ) ≤ (

∨
µ x

µ
λ) for all µ,

∨
µ(x

µ
λ) ≤ (

∨
µ x

µ
λ). If (xµ

λ) ≤ (zλ), then

xµ
λ ≤ zλ, and so

∨
µ x

µ
λ ≤ zλ, that is, (

∨
µ x

µ
λ) ≤ (zλ). Therefore,

∨
µ(x

µ
λ) = (

∨
µ x

µ
λ)

by definition.
□

We call an epimorphism f : M → N of M0 strong if f(x) = 0 if and only if
x = 0.

We define a map β(f) : β(M)→ β(N) by assigning ⟨x⟩ to ⟨f(x)⟩.

Lemma 2.13. For a strong epimorphism f : M → N , the map β(f) is not only a
monoidal poset map but also a strong epimorphism.

Proof. Since f is a strong epimorphism, c ·f(x) = 0⇔ f(c′) ·f(x) = 0⇔ f(c′ ·x) =
0 ⇔ c′ · x = 0 for an element c′ such that f(c′) = c. This shows that ⟨x⟩ = ⟨y⟩
implies ⟨f(x)⟩ = ⟨f(y)⟩. It is easy to see that β(f) is a strong epimorphism. □

We also consider the subcategories Mepi
0 and MPepi of M0 and MP, respec-

tively, obtained by restricting morphisms to strong epimorphisms.

Corollary 2.14. The operation β above defines a functor β :Mepi
0 → MPepi ⊂

Mepi
0 .

By the above argument, we redefine Bousfield lattices as follows. The definition
is one of our main topics in this paper.

Definition 2.15. For a monoid M ∈ Mepi
0 we call a monoidal poset β(M) the

Bousfield lattice associated to M .

In earlier papers, a Bousfield lattice is made from a closed symmetric monoidal
category with a zero object. However, their set theoretic confusion complicates our
argument too much. Our new definition settles this problem, and the following
proposition says that this argument is consistent.

Proposition 2.16. The Bousfield lattice B of the stable homotopy category of spec-
tra is a Bousfield lattice in the sense of our definition.

Proof. By forgetting the ordering on B, we regard B as a monoid with 1 = ⟨S⟩ and
0 = ⟨∗⟩. Then it is clear that β(B) = B. □

Proposition 2.17. The functor β satisfies the following:
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(1) β(
∏

λ Mλ) =
∏

λ β(Mλ).
(2) ββ(M) = β(M).

Proof. (1) Let {pλ : β(
∏

λ Mλ)→ β(Mλ)} be a family of epimorphisms defined by
⟨(xλ)⟩ 7→ ⟨xλ⟩, and {fλ : W → β(Mλ)} a family of poset maps. We notice that
pλ is well defined by Lemma 2.10. For an element w ∈ W , we take an element
wλ ∈ Wλ so that fλ(w) = ⟨wλ⟩, and define g : W → β(

∏
λ Mλ) by g(w) = ⟨(wλ)⟩.

Then g is also a well defined poset map by Lemma 2.10 and

pλg(w) = pλ(⟨(wλ)⟩) = ⟨wλ⟩ = fλ(w).

Suppose that there is another poset map g′ : W → β(
∏

λ Mλ) satisfying pλg
′(w) =

fλ(w) for w ∈W , and g′ assigns w to ⟨(w′
λ)⟩. Then

pλg
′(w) = fλ(w) for any λ ⇔ ⟨w′

λ⟩ = ⟨wλ⟩ for any λ
⇔ ⟨(w′

λ)⟩ = ⟨(wλ)⟩ (∵ Lemma 2.10)
⇔ g′(w) = g(w).

Therefore, β(
∏

λ Mλ) is the product
∏

λ β(Mλ).
(2) is seen by Lemma 2.6. □

3. Retract conjecture

From now on, we assume that every monoidal poset is a complete lattice.
Since a monoidal poset M is a sup-lattice with the least element 0 = ⟨0⟩, M is

a bounded lattice.

Notation 3.1. For a monoidal poset M , we define the following notations.

aM (x) :=
∨
{y ∈M : xy = 0} for x ∈M,

DL(M) := {x ∈M : x2 = x},
rM (x) :=

∨
{w ∈ DL(M) : w ≤ x} for x ∈M,

JM (x) := {y ∈M : y ≤ x∧aM (x)} for x ∈M,
N(M) := {x ∈M : xn = 0 for some n ≥ 1},
A(M) := {x ∈M : rM (x) = 0}.

We will omit M from notations, if M is clear from the context.
The subposet DL(M) is also a complete lattice. Indeed the following holds.

Proposition 3.2. DL(M) is closed under the join ∨.

Proof. By Lemma 2.8, (
∨

λ∈Λ xλ)
2 ≤ (

∨
λ∈Λ xλ). Suppose that xλ is in DL for

λ ∈ Λ. Then, xλ = x2
λ ≤ (

∨
λ∈Λ xλ)

2, and so
∨

λ∈Λ xλ ≤ (
∨

λ∈Λ xλ)
2. □

Lemma 3.3. In DL(M), the meet of x and y is xy.

Proof. Since x ∧ y ≤ x and x ∧ y ≤ y, if x ∧ y ∈ DL(M) then x ∧ y ≤ xy. □

Remark 3.4. DL(M) is not always sublattice of M by Lemma 3.3.

For investigating the original Bousfield lattice B, the operations r and a play
important roles (see [5]). Hereafter we try to give their properties analogously on
good monoidal posets.

Proposition 3.5. Let M be a monoidal poset, and r = rM : M → M be the map
defined in Notation 3.1.

(1) r is order-preserving i.e. x ≤ y implies r(x) ≤ r(y).
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(2) r(x)2 = r(x) and r2(x) = r(x) for x ∈M .
(3) r(x) ≤ xn for any n ≥ 1.
(4) r(xy) = r(x)r(y) = r(x ∧ y) for x, y ∈M .

Proof. (1) is trivial, and (2) follows from Proposition 3.2. For (3), r(x) ≤ x by
definition, and we have r(x) = r(x)n ≤ xn.

Since r(x)r(y) ≤ xy and r(x)r(y) ∈ DL(M), we have r(x)r(y) ≤ r(xy). We
also see r(x ∧ y) ≤ r(x)r(y), since r(x ∧ y) ≤ r(x) and r(x ∧ y) ≤ r(y). Therefore,
r(xy) ≤ r(x ∧ y) ≤ r(x)r(y) ≤ r(xy), and obtain (4). □

The behavior of the map r is the same as the one on B, but not that of the
operation a. Indeed, for any x ∈ M and {yλ}λ ⊂ M , the relation x(

∨
λ yλ) ≥∨

λ(xyλ) is not always equal. To make the operator a have a good nature, we
introduce a following notion.

Definition 3.6. A monoidal poset M is a monoidally distributive poset if M sat-
isfies that x(

∨
λ yλ) =

∨
λ(xyλ) for any x ∈M and {yλ}λ ⊂M .

Remark 3.7. DL(M) is a distributive lattice if M is a monoidally distributive poset
by Lemma 3.3.

In the same way as [5], we have

Proposition 3.8. Let M be a monoidally distributive poset. Then,

(1) a(−) is order-reversing.
(2) xy = 0 if and only if x ≤ a(y).
(3) aa(x) = x.

Lemma 3.9. Let M be a monoidally distributive poset. Fix c ∈M such that cn = 0
for a positive integer n. Then, for any x ∈M , (x ∨ c)n ≤ x and r(x ∨ c) = r(x).

Proof. Under the assumption, we compute

(x ∨ c)n = xn ∨ xn−1c ∨ · · · ∨ xcn−1

= x(xn−1 ∨ xn−2c ∨ · · · ∨ cn−1) ≤ x

for any x ∈M . So, if z ≤ x ∨ c for z ∈ DL(M), then z ≤ x. Thus, r(x ∨ c) = r(x)
by definition of r. □

Proposition 3.10. Let M be a monoidally distributive poset. Then JM (x) ⊂
N(M) ⊂ A(M) for any x ∈M .

Proof. Since (x∧aM (x))(x∧aM (x)) ≤ xaM (x) = 0 by Proposition 3.8(2), we have
JM (x) ⊂ N(M). Suppose that xn = 0, then r(x) = r(x)n = r(xn) = r(0) = 0 by
Proposition 3.5 (4). So we have N(M) ⊂ A(M). □

Proposition 3.11. Let Mλ be a monoidal poset for any λ ∈ Λ. Then,

(1) r((xλ)) = (r(xλ)) for any (xλ) ∈
∏

λ Mλ.
(2) r preserves arbitrary joins on Mλ for any λ ∈ Λ if and only if r preserves

arbitrary joins on
∏

λ Mλ

Proof. (1) is given by corollary 2.12.
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(2) Suppose that r preserves arbitrary joins on Mλ for any λ ∈ Λ. Then, for
{(xµ

λ)}µ ⊂
∏

λ Mλ,

r(
∨

µ(x
µ
λ)) = r((

∨
µ x

µ
λ)) (∵ corollary 2.12)

= (r(
∨

µ x
µ
λ)) (∵ (1))

= (
∨

µ r(x
µ
λ))

=
∨

µ(r(x
µ
λ)) (∵ corollary 2.12)

Therefore, r preserves arbitrary joins on
∏

λ Mλ.
Conversely, under the assumption,

(r(
∨

µ x
µ
λ)) = r((

∨
µ x

µ
λ)) (∵ (1))

= r(
∨

µ(x
µ
λ)) (∵ corollary 2.12)

=
∨

µ(r(x
µ
λ))

= (
∨

µ r(x
µ
λ)) (∵ corollary 2.12)

It follows that r preserves arbitrary joins on Mλ for any λ ∈ Λ as desired. □

Remark 3.12. We notice that Mλ is a monoidally distributive poset for any λ ∈ Λ
if and only if

∏
λ∈Λ Mλ is a monoidally distributive poset. Indeed, if Mλ is a

monoidally distributive poset for any λ ∈ Λ, then (cλ)(
∨

µ(x
µ
λ)) = (cλ)(

∨
µ x

µ
λ) =

(cλ(
∨

µ x
µ
λ)) = (

∨
µ cλx

µ
λ) =

∨
µ(cλx

µ
λ) for (cλ) ∈

∏
λ Mλ and {(xµ

λ)}µ ⊂
∏

λ Mλ

by corollary 2.12. Thus,
∏

λ Mλ is a monoidally distributive poset. Conversely,
under the assumption (cλ(

∨
µ x

µ
λ)) = (cλ)(

∨
µ x

µ
λ) = (cλ)(

∨
µ(x

µ
λ)) =

∨
µ(cλx

µ
λ) =

(
∨

µ cλx
µ
λ) by corollary 2.12. Therefore, Mλ is a monoidally distributive poset for

any λ ∈ Λ by Lemma 2.10.

Recall that an ideal I of a poset is defined by

(1) If x ∈ I, and y ≤ x, then y ∈ I, and
(2) For x, y ∈ I, there is an element z ∈ I such that x ≤ z and y ≤ z.

Suppose that a monoidal poset M is an ordinary lattice. Then, an ideal of M is
also an ideal as a lattice, and for an ideal I, M/I is the lattice of equivalent classes
under the equivalent relation defined by

(3.13) x ∼ y if and only if x ∨ c = y ∨ c for some c ∈ I

with order given by [x] ≤ [y]⇔ x ∨ c ≤ y ∨ c for some c ∈ I. We notice that M/I
is complete if M and I are complete. If M is monoidally distributive, then M/I
has the multiplication [x][y] := [xy]. Indeed, if x ∨ i = x′ ∨ i and y ∨ j = y′ ∨ j for
x, x′, y, y′ ∈M and i, j ∈ I, then (x ∨ i)(y ∨ j) = (x′ ∨ i)(y′ ∨ j) turns into

xy ∨ (x ∨ i)j ∨ (y ∨ j)i = x′y′ ∨ (x′ ∨ i)j ∨ (y′ ∨ j)i
= x′y′ ∨ (x ∨ i)j ∨ (y ∨ j)i.

Since (x ∨ i)j ∨ (y ∨ j)i ∈ I, the multiplication is well defined.

Remark 3.14. M/I is not always a monoidal poset. Indeed, we have an example: Let
M = {1, x, y, 0} be a monoidal poset with multiplication x2 = x, xy = 0, y2 = 0.
Then, for the ideal I = {y, 0}, M/I = {1, x, 0} and β(M/I) = {1, 0}. Since
M/I ̸= β(M/I), M/I is not a monoidal poset by Lemma 2.6.

Lemma 3.15. Let M be a monoidally distributive poset. Then, N(M) is an ideal
of M and JM (x) is a principal ideal of M for any x ∈M .
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Proof. Suppose that xn = 0 and ym = 0. Then, (x ∨ y)n+m =
∨

a+b=n+m xayb.

Since if a < n then b ≥ m, (x ∨ y)n+m = 0. So N(M) is an ideal of M . By
definition, JM (x) is a principal ideal of M . □

Here, consider the following correspondence:

r∗ : M/I → DL(M); [x] 7→ {r(y) : y ∈ [x]}
We notice that r∗ is surjection if r∗ is a mapping.

Theorem 3.16. Let M be a monoidally distributive poset and I an ideal in M .

(1) If I is contained in N , then r∗ is a mapping.
(2) If r∗ is a mapping, then I ⊂ A.
(3) If r∗ is an injection, then I = A.
(4) If r∗ is an injection and I ⊂ N , then:

(a) For any x and y in M , r(x ∨ y) = r(x) ∨ r(y) holds. In particular, if
I is a principal ideal, then r preserves arbitrary joins.

(b) For any x ∈M , there exists an integer n such that xn = r(x).

Proof. (1) If x∨ c = y ∨ c for x, y ∈M and c ∈ I ⊂ N , then r(x) = r(y) by Lemma
3.9.

(2) For x ∈ I, [x] = 0 = [0] in M/I, and so r(x) = r∗([x]) = r∗([0]) = r(0) = 0.
Thus, x ∈ A.

(3) For x ∈ A, r∗([x]) = r(x) = 0 = r∗([0]). It follows that [x] = [0], since r∗ is
an injection, which implies x ∈ I. So we obtain A = I by (2).

(4) For x ∈ M , r∗([x]) = r(x) = r2(x) = r∗([r(x)]) and [x] = [r(x)], since r∗ is
an injection. So we have an element cx ∈ N such that x∨ cx = r(x)∨ cx, and then:

(a) Since x ∨ y ∨ cx ∨ cy = r(x) ∨ r(y) ∨ cx ∨ cy, r(x ∨ y) = r(x) ∨ r(y) by
Lemma 3.9. Suppose that I is a principal ideal and take a generator m
of I. Then, (

∨
λ xλ) ∨ m = (

∨
λ r(xλ)) ∨ m for any subset {xλ}λ ⊂ M .

Therefore r(
∨

λ∈Λ xλ) =
∨

λ∈Λ r(xλ) by Lemma 3.9.
(b) Since there exists an integer n such that cnx = 0,

xn ≤ (x ∨ cx)
n = (r(x) ∨ cx)

n ≤ r(x).

by Lemma 3.9. □
Hovey and Palmieri introduced a map r∗ : M/J(h) → DL, and proposed Con-

jecture 1.1 in the introduction. Here, we generalize the map to our setting.

Lemma 3.17. The map rM : M → M for a monoidal poset M factors through
DL(M). Furthermore, it induces the map r∗ : M/JM (y) → DL(M) for y ∈ M
assigning the class [x] to rM (x).

Proof. The former statement follows from Proposition 3.5(2), and the latter from
Proposition 3.10 and Proposition 3.16(1). □

By Theorem 3.16, we see that J(h) = A if Conjecture 1.1 holds. This makes us
conjecture the following:

Conjecture 3.18 (Generalized retract conjecture 1 (GRC1)). Let M be a monoidal
poset. If M is a complete lattice and monoidally distributive, then r∗ : M/A→ DL
is a lattice isomorphism.

Remark 3.19. We notice that A(M) is not always an ideal of a monoidal poset M .
GRC1 is false unless A(M) is an ideal.
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Conjecture 3.20 (Generalized retract conjecture 2 (GRC2)). Let M be a monoidal
poset. If M is a complete lattice and monoidally distributive, then r∗ : M/N →
DL(M) is a lattice isomorphism.

By Theorem 3.16 (3), we see the following:

Corollary 3.21. GRC2 implies GRC1.

Example 3.22. Consider a monoidal poset M = β(Z/2mZ). Then,

M = {1, 2, 22, · · · , 2m−1, 2m = 0},
DL(M) = {1, 0} and
N(M) = {2, 22, · · · , 2m−1, 0}.

And so M/N(M) ∼= DL(M). That is, GRC2 holds on β(Z/2mZ).

Theorem 3.23. For a monoidally distributive poset M , the following are equiva-
lent.

(1) r∗ : M/N → DL is an isomorphism.
(2) Any class [x] ∈M/N satisfies [x2] = [x].

Proof. The statement (1) implies (2), since r∗([x]) = r∗([x
2]).

For the converse, it suffices to show that r∗ is injective. If [x2] = [x], then
[x] = [xn] for any n > 0 by induction. So, we have an element cx ∈ N for each
x ∈M such that

(3.24) x ∨ cx = xn ∨ cx for any n > 0.

Since cx ∈ N , we have an integer L = L(x) > 0 such that cLx = 0. Then

xL ≤ (x ∨ cx)
L = (xn ∨ cx)

L ≤ xn

for any n > 0 by Lemma 3.9. In particular, xL = (xL)2 and so

(3.25) xL(x) = r(x).

by Proposition 3.5.
Now suppose that r∗([x]) = r∗([y]). Then r(x) = r(y), and xL(x) = yL(y) by

(3.25). By (3.24),

x ∨ cx ∨ cy = xL(x) ∨ cx ∨ cy = yL(y) ∨ cy ∨ cx = y ∨ cx ∨ cy

and [x] = [y] by the definition (3.13). □

Furthermore, Proposition 3.11 leads us to the following.

Proposition 3.26. Let {Mλ}λ∈Λ be a family of monoidally distributive posets.
Then, the following are equivalent.

(1) GRC holds on Mλ for any λ ∈ Λ.
(2) GRC holds on

∏
Mλ.

Here, GRC is GRC1 or GRC2.

As an application, we extend a result of Dwyer and Palmieri:

Theorem 3.27 (Dwyer-Palmieri [3]). There is a ring Λ such that a derived category
D(Λ) on Λ does not hold the retract conjecture.
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In the proof of it, Dwyer and Palmieri define Λ to be a truncated polynomial ring
over a field k, and take ⟨k⟩ instead of h = ⟨HZ/p⟩. Here ⟨k⟩ denotes a Bousfield
class of a complex {Xi} with X0 = k, and Xi = 0 if i ̸= 0. By a similar argument
of Hovey and Palmieri in [5], if r∗ is an isomorphism from B(D(Λ))/J(⟨k⟩) to DL,
then any Bousfield class x ∈ B(D(Λ)) satisfies x2 = x3. They show the theorem by
constructing a Bousfield class y ∈ B(D(Λ)) such that y > y2 > · · · > yn > · · · . By
Theorem 3.16, the existence of the class y implies further the following:

Theorem 3.28. The map r∗ : B(D(Λ))/N → DL is not isomorphic.

4. A Bousfield lattice associated to a quotient of PID

We abbreviate ‘principal ideal domain’ to ‘PID’. Furthermore, we write x for
⟨x⟩ ∈ β(M), where no confusion arises.

Theorem 4.1. Let P be a PID and put q = pe00 · · · p
em−1

m−1 ∈ P for prime elements
pi and integers ei > 0. Let B denote a Bousfield lattice β(P/qP ). Then,

(1) B = {x ∈ P : x | q} as a set. In particular q is the zero element 0.
(2) x ≥ y if and only if x | y.
(3) DL = {ps00 · · · p

sm−1

m−1 : si = 0 or ei}.
(4) N = {x ∈ B : p0 · · · pm−1 | x in P}.
(5) B =

∏n−1
i=0 β(P/peii P ).

Proof. For an element x ∈ P , we consider an integer ei(x) and an element x(q)

defined by

ei(x) := max{e : e ≤ ei and pei | x}, and x(q) :=
∏

0≤i<m p
ei(x)
i .

We see that

(4.2) x = x(q) ∈ β(P/qP ) for any x ∈ P.

Indeed, x(q) divides x, and so x ≤ x(q). If xy = 0 in P/qP , then xy is divided by
q in P . Therefore, q | x(q)y(q) and so q | x(q)y. Hence x(q)y = 0 in P/qP and so
x(q) ≤ x.

The statements (1)-(4) follow immediately from (4.2), and (5) from (1). □

Corollary 4.3. We have isomorphisms of monoidal posets

β(P/pe00 · · · p
en−1

n−1 P ) =
∏n−1

i=0 β(Z/2eiZ) and

DL(β(P/pe00 · · · p
en−1

n−1 P )) =
∏n−1

i=0 Z/2.

Corollary 4.4. For any PID P and a non-zero element q ∈ P , the Bousfield lattice
β(P/qP ) is monoidally distributive.

Proof. Noticing the relation

(ps00 · · · p
sn−1

n−1 ) ∨ (pt00 · · · p
tn−1

n−1 ) = pℓ00 · · · p
ℓn−1

n−1 with ℓi = min{si, ti},

the proof is straightforward. □

Theorem 4.5. If P is a PID and q ∈ P \ {0}, then GRC2 holds on β(P/qP ), and
so does GRC1.
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Proof. The ideal N(β(P/qP )) has the greatest element g = p0 · · · pn−1. We com-
pute

(ps00 · · · p
sn−1

n−1 ) ∨ g = p
min{s0,1}
0 · · · pmin{sn−1,1}

n−1 = p
min{2s0,1}
0 · · · pmin{2sn−1,1}

n−1

= (p2s00 · · · p2sn−1

n−1 ) ∨ g = (ps00 · · · p
sn−1

n−1 )
2 ∨ g.

So the theorem follows from Theorem 3.23. □
Remark 4.6. We have another proof of the theorem. Since β(P/qP ) =

∏n−1
i=0 β(Z/2eiZ)

and GRC2 holds on β(Z/2eiZ), GRC2 holds on β(P/qP ) by Proposition 3.26.

5. Bousfield lattices of stable homotopy categories

Let LE for a spectrum E denote the stable homotopy category of E-local spec-
tra, and B(LE) the Bousfield lattice in the sense of Bousfield. Then we have the
Bousfield localization functor LE : S → LE . The monoidal structure of LE is given
by XY = LE(X ∧ Y ). We consider the Johnson-Wilson spectra E(n) and the
Morava K-theories K(n) for n ≥ 0. By the chromatic viewpoint, investigating the
categories Ln(= LE(n)) and LK(n) is one of main targets of stable homotopy theory.
We determine the Bousfield lattices of these categories.

We begin with a simple category. A spectrum F is called a field if it is a ring
spectrum and F ∧X =

∨
ΣaF for all spectra X.

Proposition 5.1. Let F be a field. Then, B(LF ) = Z/2.

Proof. Since F is a ring spectrum, we have FX = F∧X. We see easily ⟨X⟩ ≥ ⟨FX⟩.
Suppose that (FX)C = 0. Then, XC is F -acyclic and so XC = 0. It follows that
⟨X⟩ = ⟨FX⟩ = ⟨

∨
ΣiF ⟩ = 0 or ⟨F ⟩, which shows the lemma. □

By [4], the Eilenberg-MacLane spectrum HZ/p and the Morava K-theories K(n)
are fields.

Corollary 5.2. B(LHZ/p) = Z/2 = B(LK(n)).

Theorem 5.3. Let p0, . . . , pn be n + 1 distinguished primes. Then B(Ln) is iso-
morphic to β(Z/p0 · · · pn) =

∏n
i=0 Z/2 inMP.

Proof. The Bousfield lattice B(Ln) consists of ⟨LnX⟩ for all spectra X, which
equals, by Ravenel [9],

⟨LnX⟩ = ⟨LnS
0⟩ · ⟨X⟩ = ⟨E(n)⟩ · ⟨X⟩

=
(∨

0≤i≤n ⟨K(i)⟩
)
· ⟨X⟩ =

∨
0≤i≤n and K(i)∧X ̸=0 ⟨K(i)⟩.

since Ln is smashing and K(n) is a field. Here ⟨X⟩ · ⟨Y ⟩ is the Bousfield class
of the smash product X ∧ Y . We define a map f : B(Ln) → β(Z/p0 · · · pn) by
f(
∨

i∈S ⟨K(i)⟩) =
∏

i ̸∈S pi for S ⊂ {0, 1, · · · , n}. Then f preserves multiplication,
since

(
∨

i∈S ⟨K(i)⟩)(
∨

j∈T ⟨K(j)⟩) =
∨

i∈S∩T ⟨K(i)⟩,
(
∏

i ̸∈S pi)(
∏

j ̸∈T pj) =
∏

i ̸∈S or i ̸∈T pi =
∏

i̸∈S∩T pi.

Moreover, for the order, we have∨
i∈S ⟨K(i)⟩ ≤

∨
i∈T ⟨K(i)⟩ ⇔ S ⊂ T ⇔ I(n)− S ⊃ I(n)− T

⇔
∏

i̸∈S pi ≤
∏

i ̸∈T pi,

and f is a monoidal poset map. □
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A similar argument shows the following

Theorem 5.4. Let E =
∨

i∈F K(i) be a spectrum for a finite subset F of Z≥0.
Then B(LE) is isomorphic to

∏
i∈F Z/2.

This together with Theorem 4.5 implies

Corollary 5.5. GRC2 holds on B(LE) for a spectrum E =
∨

i∈F K(i) on a finite
subset F of Z≥0.

The chromatic tower L0 ← L1 ← L2 ← · · · induces the inverse system

(5.6) B(L0)← B(L1)← B(L2)← · · · .
Moreover, we notice that B∞ := lim

n
B(Ln) =

∏
n Z/2 inMP. We call a spectrum

harmonic if it is (
∨

i≥0 K(i))-local.

Theorem 5.7. Let H be the stable homotopy category of harmonic spectra. Then
B(H) is isomorphic to B∞ inMP.

Proof. Let f :
∏

Z/2 → B(H) be the poset map defined by (xn) 7→
∨

xn=1 ⟨K(n)⟩
and let pn : B(H)→ B(Ln) be the poset map defined by ⟨X⟩ 7→ ⟨X⟩ · ⟨E(n)⟩. Then,
we have the following commutative diagram

B(Li) B(Lj)

B(H)
∏

Z/2

�

6pi �
�3pj

6
�
f

Q
Qk

for any i and j with i ≤ j, since

pif((xn)) = pi(
∨

xn=1 ⟨K(n)⟩) =
∨

xn=1 ⟨K(n)⟩ · ⟨E(i)⟩
=

∨
i≥n, xn=1 ⟨K(n)⟩.

Therefore, B(H) is the inverse limit of the above system (5.6) by definition. □

Proof of Theorem 1.2. This follows from Theorem 5.7 and Proposition 3.26. □

In the same way, we obtain

Theorem 5.8. Let T be a set of field spectra, and put
∨
T =

∨
F∈T F . Then,

B(L∨
T ) =

∏
Z/2.

6. Problems

We leave some problems in this section.

Problem 6.1. What is a condition on X
f−→ Y in Mepi

0 , under which β(f) is an
isomorphism ?

Suppose that the problem is settled and we find a map from B to a commutative
monoid Y such that β(f) is an isomorphism. Then, we may study B = β(B) by
observing β(Y ) by virtue of Proposition 2.16, which may let us consider the lattice
from a different viewpoint.

Problem 6.2. Let M be a monoid with 0. Then, is there a ring R such that β(M)
is isomorphic to R as a monoid ?
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Example 6.3. Let p0, . . . , pn be n+1 distinguished primes. Then β(Z/p0 . . . pn) =∏n
i=0 Z/2 as a monoid by Theorem 5.3.

If this is possible, we may approach these from the ring theoretic viewpoint.

Problem 6.4. Are B/J(h) and DL monoidal posets?
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